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Abstract

Experimental data have been gathered by applying i8iaging systems, such as
LIDAR/LADAR instruments, to spherical objects. $hieport provides a compilation of the
statistical and analytical procedures to be usedfoevaluation, to be reported separately, of
two different methods of modeling objects, direstiband orthogonal fitting, based on those
data. Estimating the variances of fitted paransetdirectly from their sensitivities to data
perturbations is proposed. Sensitivities are detexdh by implicit differentiation of error
gradiens. Detailed descriptions of the directicaradl orthogonal fitting methods, as applied to
spheres in a scanning environment, are set fantiparticular, the report furnishes closed-form
expressions for those derivatives of the respeativer functions which are needed for the
calculation of the parameter sensitivities withpexg the full set of control variables.
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1 Introduction

A frequent task is to determine the shape chaiatitsy, size, position and pose of physical
objects for purposes of identification, locatioegistration, and calibration of coordinate frames.
Such tasks are needed, among others, for qualityation manufacturing, determination of “as-

built” structures, construction automation and ginitoring, e.g., [1, 2].

A common approach to these tasks is to acquire @iddinates of data points considered to lie
on the surface of targeted objects. 3D Imagingteé®ys, which include “line-of-sight”
LIDAR/LADAR devices, are increasingly used for thpsirpose. The latter instruments, in
particular, are capable of fast generation of lang@unts of data points or “point clouds”. They
scan an object by emitting laser pulses and prowpssturn signals in order to determine the
distance traveled and thus determine the distanceange” between the instrument and the
point of impact -- presumably -- on the object.eTdevice keeps track of the “bearings” such as
azimuth and elevation angle, at which each pa#dicsignal was emitted. This process of data
acquisition suggested the use in this work of pepdrerical (“angle-angle-range”) coordinate
systems for representing data points. Also, transiition to Cartesian coordinates will introduce
correlation.



Once the point cloud corresponding to an objectdess determined, a computational process is
required to extract the desired features of theaildfom this data set. In typical applications, a
mathematical “model” is specified, based on feaearacteristic for a class of objects. The
model is “parameterized”, that is, it is definediwihe help of parameters that determine these
characteristics. Choosing values for these parasetdl result in the mathematical description
of a surface to represent a “virtual object”, whioly then be compared to an image of the real
object as provided by the point cloud. By adjugtthe model parameters so that the virtual
object moves into a location that optimizes thexpnity of the object surface to points in the
point cloud, desired characteristics such as lonafpose, size and shape are found within the
coordinate frame of the point cloud. This permiistermining the geometric relationship
between that object and other objects or featurat dre also represented in the point cloud
frame. If this frame registers to an establishealigd-truth frame, then absolute measurements
of location, pose and shape can be extracted.

Such approaches to the modeling of objects of estewithin a point cloud may employ the

powerful “Iterative Closest Point (ICP)” method [8} the “Hough Transform”, e.g. [4]. Present
work focuses on the extensively used “Fitting” plgan, which is based on minimizing a

specified error function or on maximizing likelindo The reader may want to consult texts on
“Statistical Models” such as [5-7].

Of particular interest are two least-squares baggutoaches, “orthogonal” and “directional”
fitting. Orthogonal fitting, also referred to a®rthogonal Distance Regression (ODR)” [8, 9], or
“Geometric Fitting” [10], is a commonly used anddely commercialized method. In particular,
publications [10-19] discuss its application to fittng of spheres or circles. The alternate
approach, “directional fitting” has been proposed aiscussed [20, 21] for data acquired by
scanning from a single instrument position. Hémne,orthogonal (closest Euclidean) distance to
the virtual object has been replaced by the digtamt¢he direction of the scan by which the data
point had been acquired. While computational aspdominate much of this research, our
interest here is in statistical and metrologicalies.

The thrust of this report is an approach to deteimgi the sensitivities of fitted model
parameters, in general, and for spherical modelparticular. The report is also preparatory to
an experimental study of different fitting methaasd their statistical evaluation [22]. At issue,
in particular, is the estimation of derived variasdor fitted sphere centers based on specified
variances for range measurements. In Chaptere2gémeral fitting paradigm, based on the
concept of an error function, is described, alontipwhe general computational formalism for
calculating parameter sensitivities. These senis#ss will be used to estimate parameter
variances. In dealing with spherical models, tigpraach is of necessity more general than the
common nonlinear least squares approach basednearization and homoscedacity. A
comparative discussion of these statistical proeedwill be provided in a separate report [23].
Chapters 3 and 4 are dedicated, respectively,thmgonal and directional fitting of spheres in a
scanning environment. Closed forms of the derieativneeded for calculating sensitivities, are
reported. The Appendix will feature detailed detiwas of the reported formulas so as to enable
verification.



2 The Fitting Paradigm

2.1 Error Function

Once a parameterized model has been selectedhatusal to ask for parameters that minimize
the extent to which the point cloud deviates frdma tesulting virtual object. The hope is that
such an — at least locally — optimal virtual objpobvides, within the coordinate frame of the

data points, an accurate representation of theabhohject. Fitting a 3D model of a sphere of a
Cartesian centeC =[X,Y, Z] and known radiusR may be accomplished by specifying an

“error function”
(2.1.1) E=E(X,Y,Z2,d,¢,.6,4d,,¢,.06,,..,d,,¢..6,)

where X,Y,Z denote the model parameters, and the variable®,,6,i=1....n, are
coordinates of point< =[di @, «9i] to be measured. The following discussions, howeve

should not be construed as pertaining only tospecial scenario, but rather as representative of
full generality. In particular, the data may alsCartesian, or not be coordinates, at all.

The choice of the error function should be such thproduces only nonnegative values. A
minimum of zero should indicate a perfect fit. Arror function E thus furnishes a model
description.

Given an actual data set of measurements
PO = [di(O) 2© gi(O)], i=1..n,
the parameter values
X=X yYy=y0 z=270
are thus determined by minimizing the expression
E=E(X.Y,Z,d”,4°.6° d”, ¢, 6°....d.°.6°.6)
for the variablesX, Y, Z, given the coordinate values of the data poRts
A common approach to constructing error functian®iassign an individual error
g=e(X,Y,Z,d,4,.6 )

to each data poin®, = [di @ Q], and to minimize the sum of squares



(2.1.2) E=Z§.

i=1
Both, the orthogonal and directional fitting methatentioned in the Introduction, are based on
the Nonlinear Least Squares (NLS) concept [17, 18]. both cases, each data poiRt is

assigned a “theoretical point” or “model poirﬁsi’ located on the proposed virtual object. That

theoretical point is seen as the desired “corrpoitit, and the Euclidean distance between the
two points is considered the individual error

¢ =[R -

of the data point with respect to the current lmcatnd shape specification of the virtual object.

In orthogonal fitting, the theoretical poiﬂﬁ is chosen as a point that lies on the virtual cbje
and is closest to the data poif? in terms of Euclidean distance. In the 3D imaging
environment, however, the data poft is considered to lie on a particular “scan ray™lme-

of-sight”, which emanates from the instrument posit
In directional fitting, if the scan ray intersedtee virtual object, the intersection closest to the

instrument is thus chosen as the theoretical péintfor the data poin®P . What happens if the

scan ray of a data poir; does not intersect the current virtual objectMitjht be tempting to
reject such an occurrence as unrealistic as the plmud was generated from the real object. It
should be kept in mind, however, that during thénfj process, the virtual object will, in
general, not match the actual object. Indeedpbskang that match is the purpose of the fitting
process. ltis, therefore, necessary to extenetoe definition to those date points whose scan
rays miss the virtual object. The following gewasrinciple for a continuous extension has been

proposed in [21]. Here, the theoretical pofiptis chosen as a point on the virtual object that is
closest to the scan ray in terms of Euclidean dcsta

2.2 Sensitivity

As we return to the general error functién(2.1.1), we examine a major aspect of analyzieg th
results of a fitting procedure. It concerns therf'stivities” of the resulting parameters, namely,
their marginal rates of change caused by pertwbsainf the data coordinates. Such sensitivities
not only provide key information about a fittingogess, they also play a role in the estimation of
variances and covariances of the fitted paramedsrgiill be discussed in the subsequent section.

With each set of stipulated data valuksg,, 8, i,...,n, the error functionE associates a set of

minimizing parameters. We may thus consider theimizing parameters as functions of these
data variables

(2.2.1) X(d,,4,6,,...d..4..0, )



in a suitable neighborhood of the actually measwatlies d©,¢®,89,i=1,..,n. By
definition,

X © = X(d(o) (0) 9(0) _’déo),¢é0),9r$0) )

Y(O) - Y(d 1(0)'¢(O) 3(0) ,d rEO) ¢(0) 9(0) )

Z(O) - Z(d (0 ¢(0) 3(0) 'drEO) ¢(0) 3(0) )

n '“n
are the desired results of the fitfimgcess.

In what follows, we will assume that the error ftiao E satisfies all necessary differentiability
conditions. We are particularly interested in teeihtives

o0X 9dY 0Z o9X adY 9Z oX oaY GZi

IR R R ’ ’ | I T R | = "'ln)
o’ o0, od’ 04, 04, 04, 06’ 94 98"

because their values, fof =d©,¢, =¢®,8 =6?,i=1..,n

(2.2.2)
g_()j( ‘(0) - g;f d®,...09), 22‘(0) g; d®,...89), ax‘(@) (d(o) .69
‘(0) oY (d(O’ .6, 6_Y‘<0) ¢ (d(O’ 6, 6_61‘(0) za_a(dl(m""’e’fm)
ad \<°> d_ (d1<°>,...,9,§°>) a¢‘(0) ” 92 4o ... q), 3—2\<°>:g—2(d;°>,...,9,50>)

represent the respective sensitivities of the patara X @, Y@, z© to perturbations of the
indicated data variables.

Implicit differentiation will be used to derive epgssions for the sensitivities (2.2.2) from the
expression for the error functida. Indeed, the gradient d& with respect to these parameters,

3 -
6_XE(X' Y,Z,d,¢.6...d,,9..6,)

9
(2.2.3) OxeE =| 5 B Y, Z,d01,6,0000,,8,,6)

9
37 ECY.2.0u0.6,.0,.4,.6)




vanishes if the parameterX,Y,Z have been minimized with respect to the coorémat
d,¢,8,i=1..,n. As we thus substitute for the parametetsY, Z their corresponding

functions (2.2.1) in the above gradient componewts,arrive at a set of derivative functions
which are identically zero as functions of the datdablesd,,¢,,6,i =1,...,n. In other words,
the following derivative expressions,

oE
5 X016, Y(d,-..6), 2(d;....6). d, .6

n

)=0
oE _
(2.2.4) 5 (X(0,.8).Y(d,,...8). Z(d, .6, d;,...8,) =0

%N

a—E(X(dl,...,Hn),Y(dl,. 8., 2(d,,...8.), d,,...8,) =0

vanish identically. Then so do the derivativestiodse functions, which by the Chain Rule
become:

0°E 0X N 0°E 6Y+ 0°E az 0°E

OXZ od, © oXaY od * oxoZ od, T adax O
0°E OX  9°E QY 0°E 0Z  O°E _,
dYoX ad, oY? ad,  9YoZ ad. adiaY

0°E OX , 0°E 9Y AL 0°E 9Z , O°E 0.

370X od.  9z0Y ad, « az7 ad.  9doz

For brevity, we displayed these relationships digly sensitivities with respect to the range
variablesd, . Evaluating these functions for the resultingapaetersX°®,Y°,Z° and the actual

datad’,¢’,8°, yields a numericamxm linear system of equations for the sensitivit2 Q)
with respect to the coordinatels. With the notations

‘(0) 0° 9E x0 yo 70 go gy ‘<0) 90°E
oxXoY

0X? 0X6Y (X(O), YO 70 d1<o) ,___,HrsO))’ etc.

6X2

this linear system takes the form

‘<0) ‘w) ‘(0) ‘(0) ‘(0) Z‘(O) __0E ‘«))
6)( 2 GXGY GXGZ 0d.0X
(2.2.5) ‘«)) ax ‘«)) ‘(0) oY ‘(0) ‘«)) 0z ‘<0) 0°E ©
GYGX 0Y2 aYGZ adiaY
‘<0) ‘<0) ‘<0) ‘<0) ‘<0) ‘<0) -_ 0°E ‘(0)_
azax 0ZoY 0z° ad.0zZ



The matrix of this linear system may be statectims of the Hessian

" 0°E  9°E 0°E |
X2  9XaY 0XoZ
0°E 0°E 0°E
aYoX aY? avYoz
0°E 0°E 0°E

| 0ZOX 9Z0Y  9Z? |

(2.2.6) Hy,E=

of the error functiore. The linear system (2.2.5) may thus be written as

9X |0
ad.
Y o|__0 (0)
o =% g go
ad, ad, "

9Z |9
ad.

(2.2.7) H,,E®©

where again the symbol|©is meant to indicate the, -- a posteriory --, simbsdn by

X©@ Y@ 7O and the actual data values. The resulting Hessitnix is positive definite, and
therefore nonsingular, at any locally unique minimaf the error functionE. The linear system
is then solvable and yields the values of the sitg@s (2.2.2) with respect to the variablds

The remaining sensitivities with respect to theiatsles ¢, and § may be determined from
analogous linear systems, based on the same Hesatanr.

Note that implicit differentiation can be used &tatmine higher order sensitivities such as

0°X  9°X  9°X  9*°X  9°X 9°X
od” ' odog, ' 0do6, ' ag?’ 0406, 09>

The corresponding linear systems are based onatine $lessian matrix as in (2.2.7) but use
different right hand sides.

2.3 Noise Propagation

In, general, data variablesl,,¢,,6 and the parameterX, Y, Z will be considered random
variables with expected valuesd®,¢®,8° and X©@,Y® z© respectively. In frequent

applications, however, some data variables of tha éunction will be given “control variables”
or “design variables”, and are thus not random. ewfitting scanned objects, in particular, it is



frequently assumed that the noise in range measuntsd, dominates noise in bearings, which
furthermore is difficult to assess. Consequerdhly the range coordinated; are considered
random, while the bearing anglegs and € are specified control variables. For scanning
instruments, it is generally safe to assume thajeavariablesd, are independent of each other.
The following exposition will be based on theseuaggtions, again for brevity.

The sensitivities described in the previous sectdhbe instrumental in assessing the effects of
data noise on fitted parameters. The well knownrdEPropagation Formula” provides first
order estimates of the variances (see GUM [24] pt&hab)

- -2
var(X) 0)° a—x‘(‘” var(d,)
Zlod! |
0 [aY (o |
(2.3.1) var(y) 0 ﬁ‘@ var(d,)
i=1 i

var@z) O z[az \“”} var(d,) .

Similarly, one has for the covariances [25],

cov(X,Y) O Z{ ‘(O) oY ‘(O)}var(di) = cov(Y, X)

(2.3.2) cov(Y,Z) O ZFY \“’) gj \@} var(d,) = cov(Z,Y)

5| 0Z | OX
cov(Z,X) 0| —|9 =] |vard) = cov(X,Z) .
@ X) ;{Odi\ adi\ @) = cov(X,2)
Again, it is here assumed that the coordinate nreasentsd® are independent, that is, not

correlated, so that their mutual covariances are.z&lote however that, even if the measured
quantitiesd® are independent, the fitted paramet¥r®, Y@, Z@will still be correlated.

In most applications, the condition of homoscedarsitsupposed to hold, that is, the variances
have the same value within a class of measurenmrdh,as the class of range measurements,

var(d) = vard,),i=1...n.

For the special cases of LS and NLS regressiomhich the individual errors in our scenario
would take the form

q:di_fi(le!Z'¢i'0i ) )



a covariance matrix can be approximated in anaglig simple fashion under homoscedacity as
set forth in the general literature, e.g. [5-7, 2B]. Unfortunately, the error functions considere
here, in particular, the orthogonal error funct{@mhapter 4) and a portion of the directional error
function (Chapter 3) do not fall into this regressicategory as the required separation of the
random variables from the control portion cannotibkieved. It is for this reason, that the more
general approach described in Sections 2.2 andh@d3to be adopted. A more detailed
explanation will be provided in a separate rep28{ [

3 Directional Fitting of Spheres

3.1 Directional Errors

Introducing the trigonometric quantitie§,s, ¢, the Cartesian coordinates,y,,z of data
points will be expressed in the form

(3.1.1) x =d,cosg cosf =dg;, vy =dsing cosf =dzg, z=dsing =dg,

where &+ 12+ ¢?=1. The vector(&,n,,¢ )represents the direction of the scan ray along
which the data poinP, was acquired. Next we introduce the quantities:

P= Xic'(i +Yi,7i +Zici )
(3.1.2) qi2 = X2+VY24+72 - p|2 ’
s =R -q’”.

Figures 1 and 2 illustrate the geometric meaninthese quantities.



Figure 1. Geometrical interpretation of the directl error function when a scan ray
intersects the sphere surfad®.(marked by dark dot) is the experimental poimfhtidots

mark the theoretical point on the sphere surfﬁcand the mid-chord poir®’. The length
of the bold line segment measures the effradefined by (3.1.3).

If the scan ray of data poinP intersects the virtual sphere centeredCat[XY Z , w¢

associate with P the midpoint P’ of the resulting chord. The quantity, =|P'| then

represents the distance of that “mid-chord” porotif the instrument at the origi@ =[00 .0]
Similarly, ¢ =|P'~C| =0 represents the distance of the mid-chord from fiteee center.
Thus

g <R

is the condition for true, that is, non-tangentrgersection. The quantitigs and g, are side
lengths of the right triangledOP'C, with its right angle a@'. Pythagoras thus yields the

relation (3.1.2) betweerp? and g°. The triangIeAI5i P'C, where the theoretical poirif>i
marks the entry point into the sphere, also hasglat mngle aP’. The quantitys thus
represents the length of the half-chord that néeds subtracted from the distanpe=|P’| to

arrive at the desired distancﬁé” of the theoretical point from the origin. As asu#, the

directional error of the data poif is given by

(3.1.3) f,=p —-s—d (= “interior error” of P if g <R).

10



Figure 2. Geometrical interpretation of the dirextl error function when a scan ray does
not intersect the sphere surfadg.(marked by dark dot) is the experimental poimghtidots

mark the theoretical point on the sphere surfécand the point?’ on a scan ray which is

the closest one to the sphere cefitefThe length of the bold line segment measures the
error g, defined by (3.1.4).

On the other hand, if

qzR,

then the scan ray of the data poRtfails to truly intersect the virtual sphere. hat case, and

following the general extension principle set fomhSection 2.1, we determine the theoretical
point as that point on the virtual sphere whichl@sest to the scan ray. The line segment which
represents the shortest distance between the sphéerine scan ray has to be orthogonal to both
the sphere and the scan ray. The line segmenhtémifo be part of a line through the center of

the sphere, and also meet the scan ray at a poiat a right angle. This defines again the right
triangle 40P'C, which we encountered before, and whose side lisngte againp, and g,

(Fig.2). The desired theoretical poilg?it thus lies on the sideHO] at distanceR from center
and at distanceq, - R fromP'. The triangledlsi P'C is also a right triangle, has side lengths
|P/= Pi]|= p, - d,and “R’—ﬁ“:qi -R. The length of its hypotenus#ﬁ—PiH thus

represents the error of the data pdit

(3.1.4) g = \/(pi —-d)*+(q - R)* (= "exterior error” ofP if g = R).

11



(Note that, by Thales’ theorem, the locus of akgible pointsP’ is the sphere through both the
virtual sphere cente€ and the origi® , centered halfway between these two points.)

If g —R=0 thenf, =g , so that the combined error function will be @goenbus. While the
error expressiory; is everywhere twice continuously differentiablee error expressiod; fails
to be so if and only ifs = Q -- the case of tangential intersection -- , vehiés gradient with

respect to the parameted§, Y, Z is infinite. In these cases, the resulting &rlor function

will also not be differentiable. However, thoseint® will only amount to a closed set of
measure zero in parameter space. As a consequegcadient based numerical minimization
method, such as the often relied on “BFGS” mett&],[may still be used [21]. Similarly, the
probability of the error functionE not being differentiable for the fitted parameters

X @ y© 7O will be theoretically zero.
We find it convenient, to categorize only a trugeisections as a “hit”. A tangential intersection
is thus considered a “miss”, along with all casesvhich the virtual sphere is not met at all.
Accordingly, we divide the indices into two sets:

U :{i:qi <R} andV:{j el 2R}.

The combined error function then takes the form

(315) Edirec dlrec(x Y Z dl’¢l’ dn’¢n’ n ZHJU i z][,vgj

3.2 Deivativesfor the Directional Error Function

In this section, we list formulas for the gradiemtsd the Hessians of the individual error
functions f, and g, with respect to the parametefsY, Z, along with the second derivatives

with respect to both these parameters and the databled , ¢, 8. Gradients support

optimization methods and are the first step towalelermining the above second derivatives,
which are needed for the computation of the sefits#s and variances described in Sections 2.3-
4. Derivation of these formulas is provided in Agpendix as referenced.

In terms of the individual error$, and g; , the gradients and Hessians of the directiorrak er
function are:

2 2
|:|>(YZ Edrec - inu |:|>(YZ fi + Zil]\/ |:|)(YZ gi
2 2
H XYz Edrec - iU H XYz fi + Z“]V H XYz gi .
The gradients are linear combinations of the vector

12



(3.2.1) U=|Y| and 4 =7 |,

namely (see (A.2.6) and (A.2.7) in Appendix)

1

(322)  S0xf7=2U- fifi*+a) o0 1

f 2 _ R Rp,
—U o 08" = -V —=d)4,
s ] 4 5> Ixz9 ( qi) +( 4 )4,

Similarly, the Hessian matrices are linear combamst of the following four symmetric
matrices:

100
(3.23) 1 =|0 1 0| (Identity),
0 0 1]
[X]] | X? XY XZ]
U™ =Y [[X Y zZ]=|YX Y* vzZ|,
7] ZX Y 7%
X ] & ] [XE+EX X +EY  X¢ +&Z]

Ud +a4UT =Y ([& 7 gl+|m|[X Y zZ]=|Y§+nX Yo +nY Y +n2Z

Z G | Z&tGX 2 tgY  ZgtgZ

& & né &

a4’ =\n |l& n cl=|n& n° ng|.

G | G& < 6|

Thus, (see (A.2.11) and (A.2.12))

13



p —d p —d; uuT- (pi(pl_di) _EJUT uT
J (SJ LA L+ a0

(p? s)(p. d) , 2Ap -s)
S

(3.2.4)

+

12
|

jMT

_Hxvzg| [l jl +—UUT q_si (UAa' +4u")

R(x2+\(2+z JA/L
CIi

Evaluated for optimal parameter¥©@,Y©, z© and actual data point® =[d® ¢ 89 | ]
these Hessian matrices support the left hand ditleear systems (2.2.7) for the corresponding
sensitivities. For the right-hand sides of thogsems, we have for the range variabdes

0 _ of.’ ag,”
vazaEdrec - ZiDU D><YZ£ + ziDVDXYZH

where (see (A.3.1) and (A.3.2))

2 —
(3.2.5) 0,5 =—2y-P78 4 >0
0 _ of.’ ag,”
DXYszdrec - ZiDUDXYZa_¢_ + ziDVDXYZW J

are multiples of the vectors

/i a,
o . _ 0 4
(3.2.6) a¢A_ & | aei/li B,
| 0 ] LV

where a; = —cosg, sing,, 5 = —sing,sind, y; = cosg. Thus

14



__,7i_ __,7|_
1 of 2 1 dg’
2.7 =0 =TI, (f, : =0, — =T, :
(3.2.7) > mza¢l () & | 2% 39 (9) &
(- O - - O .
o o
1 of 1 09’
3.2.8 —Uyy—= =T(f |, U — =T, |
328 0w =T A | S0m gy = 16| A
LV ] Vi ]
where the two pre-multiplying matrices are given by
(3.2.9)
Fi(fiz) :(1— pi(plg_di)jUUT +(p| _S)((n +S)(2p| _di) _EinUT _'_(pi _S)(l_ pi _dijl,
S S S S S
2 2
r(e) = ( Rr;jum ; R(Mw (Rp dujl .
q| I ql
As
-] a, |
(3.2.10) A & |=0and A'| B [=0,
L 0. Vi ]

the above matrices may be replaced in (3.2.7)Y&2d8), respectively, by the following
symmetrized versions:

(3.2.11)
FiS(fiZ) :(l— p|(p| _di)juuT +(p| _S)((n +S)(p| _di) _é] (AiUT +UAIT)+

3 2

S S S
p-d

—g)| 1- 1,
(P S)( s ]

15



4 Orthogonal Fitting of Spheres

Here, the theoretical poirPf’i , that is, the point on the sphere which is clos@she data point
P =[xi Y, zi], defines the individual error

h=|P-R[=lc-Rl-R=w-R

with respect to the sphere centérand the radiu®R. We thus represent the orthogonal fitting
approach by the full error function

n n
(4.1.1) Ein = 2 W =) (W -R)? =W - 2Rw + R? .

i=1 i=1
Consistent with the generation of point clouds tgmming from a single instrument location, and
as discussed before, the underlying coordinate dsalare again considered polar with the
instrument location at the origin. For an analgiscussion of the orthogonal error function in
terms of Cartesian data see [11].

With the notation (3.1.1) and the definition (3)102 the auxiliary quantitityp, ,

x =d, cosg,cosgd =d¢ , y =dsing cosd =dsn , z =dsing =d¢ ,
we have
(4.1.2) W =(X=x)+(Y-y)+(Z-2)"=(X*+Y?*+Z%)-2d p +d? .

A key vector, in which gradients and Hessians efititividual orthogonal error squargémay
be expressed, is given by

(4.1.3) W, =|Y-y |=|Y|-d|n|=U-d4a,

z-z] [z] |¢]

16



as W,'W. =w’ . Also (see (A.4.3) and (A.4.5)),

1 . (R
(4.1.4) > Oeh -(1 Wi)wi

and

1 , (. R Ry o
(4.1.5) 2 Heh _(1 jI+WI3WW

For the derivatives which define the right-handesidf the linear system (2.2.7), we have first:

n 2

0 0
XYZEEorth = ZDXYZ h

i=1

with (see (A.5.2))

1o W _ R o [1-R
(4.1.6) 20 5g = Ty (P AW (1 WJA-

Again, the corresponding mixed derivatives withpexs to the bearing variablegs, &

are multiples of the vectopg%/li and %A,. , defined in (3.2.6). Their common multiplier isth

matrix

2\ — _ _B R_d| T
(4.1.7) r ()= di(l Wj| + WU,

which, in analogy to (3.2.11), may be replaced blgds symmetrized form,

1. s, - _ _B R_d. T
(4.1.8) SIE) = d{l vvijl "
Thus
~-n,] -n]
1, o _ _ s
(4.2.5) ZD ) =r(W)| & |=I°(h)| &
_O_ _O_
and

17



(4.2.6) 1n on

SOee 50 = L) B | = I7(Y)| A

This concludes the main part of the report. loiofved by the Appendix in which details about
the derivation of the key formulas are provided.

Appendix A: Determination of Derivative Formulas Used for Calculating Sensitivities

Here, we provide step by step developments of gnvative formulas referred to in Chapters 3
and 4 for the purpose of determining the paramsgesitivities for directional and orthogonal
fitting. In Section A.2, the gradiert,,, E, .. and HessiarH ,,E,.. of the directional error

Irec
function are at issue. The Hessian provides theaixn&ir the corresponding linear system
(2.2.7). Also for the directional error functiothe derivatives of both parameters and data
variables,

drec

0 oE 0 oE 0 oE
EDXYZE: Xz 3q 6_¢iDXYZE:DXYZO_¢i’6_6iDXYZ =nyz£

are derived in Section A.3, furnishing the righbtiaides of these systems. Finally, Section A.4
provides the analogous information in the casertbfogional fitting.

A.1 General Considerations

In what follows, the calculation of gradienits,,, and Hessian$d,,, will often be based on the
following straightforward reformulations of prodwatd chain rules:

(A.1.1) O..b(ad) =b'@0,,a,
O,zab =al,, b+bl,a,
O.,a° =2a0,,a,

XYZa |:|XYZ\/— |:|XYZ 2 ’

and
(A.1.2) H..b(a) =b'(a)d,,ad},a+b(@H,,a

H,,ab=0,,a0},b+0,b0,,a+aH,,b+bH,,a,

18



H,,a° =20,,a0,,a+ 2aH,,a
wza=H \/_-— O’ 05,a +%1Hma2.
a

These formulas are straightforward reformulatiofispduct and chain rules, and will not
always be referred in what follows.

A.2 Gradients and Hessians of the Directional Error Functions

Recall the directional error function

Edrec - Zmu i ZIDVgI

with individual errors (3.1.3-4),

f=p-s-d, g =y(p-d)+@-R’
based on the auxiliary quantitips ¢, s (3.1.2) and the direction cosines (3.1.1)
& =cosp cosd, n, =sing cosd, ¢ =sing .

Again, all gradientsll,,, determined in this Section will be linear combioas of the two
vectors,

U=|Y]| and 4 =|7 |,

which were introduced in Section 3.2. Using (A)MWhere indicated, we note:
(A.2.1) Oz P = Oxe (X +Yn,+Z6) = A4, Oy, p’ =2p4,
DXYZqi2 = Dxx(z(x2 +Y?+2Z%) - Uz p|2 =2[U - p4],

_11 2 1
=0 —Uy0" =—[U - p4],
XYqu XYz ql 2 q, XYqu q|[ pl |]

19



nyzs2 = DXYZ(R2 _qiz) = _DXYZin = _Z[U - piAi] '

1
xzS = xvz\/7 ___vazs ;[U - piAi] )
1 1
vazg = _? vaz§ =§[U - piAi] :

All HessiansH,,, determined in this section will be linear combioa$ of the four matrices
(3.2.4). Again we begin with the auxiliary quaietst

(A22) Hy,p =0, H,,p’ =20,,p 0%, P =244 by(A.12),
HyoOF = Hy (X2 +Y2+2Z%) = H,,pf = 2(' _AiAiT) )

HXYZSZ = _Hxvzqiz = _Z(I _AiAiT) '
From Hessians ofj*, s we pass to Hessians gf , s, using (A.1.2)

-11 11
Iamxvzqﬁmxvzq EEIHXYqu

_q_l3 (U - piAi)(U - piAi)T +qi(| _AiAiT)

Hyz0 = Hyy, Qiz

1 T, B p? T, 1 T
== UUT+ L (UA + AU) - AT+ (1 —AA").
q’ o & o ol 44

Thus

2
(A.2.3)  H,,q =qi| —iauuT +%(u4 + AU) —(% +3]44T.

Concerning the last term, note

pi2 1 B pi2+qi2 B X2+Y2+22
gt = 3 - 3 '

G d G G

Similarly, by (A.1.2),

20



-11 11
HyzS = HXYZ\/g = jgﬂxyszDTxyzSZ +§§Hxvz§2
1 1
=g U=pa)U-pa) - =0 - a4))
1 T, B p’ 1 T
=—-——UU +=3 UA +AU)—— A4 —— (1 —A4A).
; o U1+ A4U) = Al - (- a4
Thus
1 1 o} 1 p.2 T
(A.2.4) H =-—1-=UU"+ 24 + <U)+(— ——'JAi A
XYZS S s3 s3 AI Al S s3 Al

Concerning the last term, note

3 - 3

s S e} o) q’ q’

From the above, we derive derivative expressiomsluing the errorsf, and g; :

1
Owz fi = Oz B =~ OxeS = 4 +§(U - p|A|)

(A.2.5)
:lU—MA‘ =£U—fi+di/]‘.
S S S S
1 f, f(f +d)
A.2. —[ f.2: .0 =i N [ B A N i ‘
( 6) 2 XYZ i i—XYZ i S S A|

For the external portion of the error function, fivel

2(q-R) (

2
Oxvz9 = 2(p —d)Uyxyz b +2(0 ~R)Uyyz0 = 2(p; —dj)U + U _piAi)

_ Z(Qi_R)U + 2(p—d)g -2(q -R) p, A
i ] '

or

1 2 R Rp
A.2.7 —DXYZ ;= 1-—)U —'—di |
( ) > x2d ( qi) +( a )4,

21
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and by (A.1.1),

1 1 1
(A-2-8) DXYZgi = g| 2 g nyzgi2 =E((Qi - R)U + (Rp| _diqi)Ai) .

Moving to the second derivatives, we find

1.1 i 1 p
(A.2.9) Hopf = —H s =] +§uuT —%(UA,.T +4UT) +(§ —%}4/1? .
Next, we introduce the matrix
1
Gy fi = Uxyz f|DI<Yzf| —g(u -(p _S)Ai)(u -(p _S)Ai)T
- PRY:
= U - PR A U+ RS

Also by (A2.9),

finyz|=£|+f'UUT fsp(UAT+A1U ) + '(p's S1)AAI

S

By (A.1.2) ,H,, f?=2G,,f +2fH,,f . Thus

1 foo(1f -5 f
EHXYZfiZ zgl +(§ +§JUUT—(% +

(p.-9)’ fi(p.z-sz)] Y
+( Sz + S3 A| i

B}uf+4uw
(A.2.10) 3

Expressingf, = p, —s —d, yields

1 _ fi_s+f _p-d

g g 5
P—Ss | fim _(p-s)s+fip _ ps -5 +p’ - ps - pd _h(p-d) _1
s’ s s s s S
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(p=s)°, (' -9) _ s -2ps+5+p’-ps’ -sp’+s - p'd +ds’
s 3 s
= (pis_ pizdi)_(pisz_disz)_Zpisz +2§3
§3
- (P’ -s°)(p.—d)-2(p -8)s°

3

S

From these relations, we find the alternate exprass

: . j (p_d) T
“H,,f?=|"—-1|l +| =—— |UU
2 XYZ S s3

p(p-d) 1 T T
MARHT = ((UA U

g S1j( A7 +A4U7)

(P -s)(P -d) , 2Ap -9)
s 5

(A.2.11) -

jMT-

which duplicates the first portion of (3.2.1).

We move now to the external portiap of the error function. Note that the following $$eans
vanish:

H XYZ pidi ’ HXYZd?’ HXYZRZ'
Thus

Hye 0’ = HXYZ((pI -d)*+(q _R)Z): Hyz (P’ -2pd +d? +q° -2qR+R’
= Hxvz(p|2+qi2_2RQ) :Hxvz(X2+Y2+Zz —-2Rq) =21 - 2RH .G

and by (A.2.2),

2 2 2
(A.2.12) H,.,0% = (1— BJ | + %UUT - %(U/f +AUT) + R(%]AAT.

This establishes the second portion of (3.2.1).

A.3 Mixed Derivatives of the Directional Error Function

The right-and-sides of the system of linear equati@.2.7) are at issue. They require the
negatives mixed derivatives of the form

23



0 0
ﬁDXYZ Edirec = |]XYZ a_DEdirec ,

where L indicates a data variable of the error functidte first consider the data variabde.
Note, in this context,

of. afi2
xvza_d = Uy, (=1 =0, vaza = Dxyz(2fi

o,
od.

O Jszvz(_Zfi)z_z(vazQ _DXYZS) :

Thus by (A.2.1),

1 of 2 1 1
A.3.1 - -1 =—-4 --(U - )=-"(U + . — ) .
(A3.2) s i G R CRACREIZY
Similarly,
dg’ d
DXYZ& = DXYZ_((pi —d)*+(q _R)z): _Z(DXYZ(pi _di): 20Uy, B,
ad, ad,
so that
1 dg’
A.3.2 O, 2 =-4A .
( ) 2 XYZ adl AI

As pointed out in Section 3.2, the calculationhaf torresponding derivatives with respectto
and 8 will be based on the matrices generated by tHerdiftial operator

Fi = D}inici [DXYZ]

introduced in Section 3.2. In order to apply thperator to the individual errors.®, g° , we

first apply the transposed gradieﬁt}im to auxiliary quantities. In particular, note:

(A.3.3)
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08 08 98| - - foX  ax ox] - )
1 2 2 1 - - -
9 o7 oc 00 o o ac| [0 00
on,  0n, on, T oY oaY oY
O, A =|=2 ' L1=|0 1 0|=1,0 =|l— — —1|=|0 0 0|=0
C(i”iCiA| afl a/7| acl &iniGi afl a,7l a(_l
96 96 9% 1 10 0 1 9Z 0z 0Z| |5 g
10 o 0G| - - 98 A 0G| - s
and
(A.3.4) 0L, P =05 (XE+Yn +Z¢) =[X Y Zz]=UT,
6/7( p = Zpoc (p) = 2piUT
D}i”ifiqi = 4(./74' (X2 +Y2+ZZ piz) - _DTq( (p ) = 2p|UT
_ _ _ IO.
D;I;i'?ifi 4= f.'? G \/a) \/7 {lrjl(, (q| ) - UT
1 1 4
D;I;”C q = 7D}i’7ifi (ql) :%UT
Dz;ir]i(i SZ: D;'?ifi (R2 - qiz) - _D;I;OC (qiz) = 2p|l'JT
_ p,
D}ncs D{“\/T \/7 Eﬂc(s) ur
1 1 P,
0y, —=->0,,.5)=-—<UT
s s S2 &G S3
Consequently,
T oo _ _ P r— [ fitdi) +
(A.3.5) Ogne 1= 0hpe (P =8 —d) =0g, .0~ 0,08 = 1_§ U =- 5 U

With these intermediary results, we are able terdeine the matrices” (f.?), I' (g7 .)By
(A.2.6) and the Product Rule,
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_F(f ) Efic ;vazﬂ D;fzc( A, fl(f;-d)j
ot | fi(f+d) r (R +d))
= U] o7 i N RSP
Eric(sj ( r/cAl) 5 — 4 {ir/ifi( S J

By (A.3.3-5),

f, 1 1 f +d p;
D;HC(SJ (Dc‘nc l)S +fDI‘nc§ ( 5 JUTS +f( ?UTJ

:(_ fi;di _fi_ngT _ _((fi +d)s + fi(f+s +di>jUT

S S
_ _((fi +d)s + fi(fi+d)+ fis]UT _ _((fi +d)(fi+s)+ fisJUT

3 3

S S

T fi(f +d T i i
10192 - [Dznc(sn(fﬁdiﬂs e (1, +0)

= ((fi +di)(fi3+$)+ fiSj(fi +d) +L( f +dij]UT
S S\ S

= fi;di ]((fi +di)(fi +§)+ fiS + fiS))UT

3

S

_ (fi+di)((fi+di>(fi+s>+2fis;))]UT

From this and by (A.3.3),
(A.3.6)

r() = —(

_( fi(fi+di>j,
S

For the external portioy, of the error function, we find similarly:

(f+d)(f, +5)+ fis]UUT _((fi +d)((f +d)(F, +s)+2fis>)JA_UT
S 1

S3 3
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1 2_
EF( )_ E/]( ZDXYZgi ch(u(l__)+A|(Rp d)J

_ R Ry Ro)
UD}”C( qj-'-(DEr/c ')(q d)+AD<‘nc(q J

(A.3.7)

By (A.3.4),

R Rp
Of, | —— |=——U",
<(|’7|<'|( qj q|3

R |- R 1
Drﬁmci( q j q ( 5./7:. p|)+ Rp;J 5.17 §i q

_( Rp.] _(R(qf+pf)jUT:(R(XZ+Y2+ZZ)jUT
g o o’ o

so that — in matrix notation--,

1. Rp |+ Rp, R(X?+Y?+Z7?)
2Fi(gi) ( q3 jU +( 50.4.4)( g diJ+A1( OI. J
and finally,

(A38) %Fi(gf):_(%jUUT +(R(X2+qY32+ZZ)]AiUT +(&_dijl ]

A.4 Gradientsand Hessians of the Orthogonal Error Function

We repeat the definitions of Chapter 4. The efuoction for orthogonal fitting of a sphere is
given as

orth z hz =

n
i=1 i=1

(W - R)? =w? - 2Rw + R?

where
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and

W= (X=x)"+(Y=y)* +(Z2-2)" = (X*+Y*+Z%) - 2d,p +d

with the notations (3.1.1)

X =d, cosg, cosf = d¢; ,

y; = d;sing,cosg, =dn,,

and the definition (3.1.2) of the auxiliary quayttt . The vector

X=X X ¢

Z-12 Z G

W =| Y-y [=|Y|-d|n|=U-d4

z =d;sing =d¢ ,

will play the key role. Indeed, all the followirgyadients are multiples &, :

(A.4.1) vazVVi2 =2W,
11 1
OyeW = Oy fW ==—0,,W = =W, ,
xvz Vi xvz VWi 2w xvz V¥ w [
1 1 1
DXYZWi = _WiDXYZWi = __iWi .
Thus
1
(A.4.2) Ozt = UyrW = —W,
W

and in view of

vazh2 = Uy (W = R)? = 2(w - R)0y,W = ZI—\Nl )

it follows that

28
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1 . [, R
(A.4.3) > 0xeh _(1 W}Ni .

Te Hessians of the quantities considered beloviirmgar combinations of the two matrices

X=X
| =identity, and |Y-y [[X-x Y-y Z-z]=ww.

Z-12
In particular,

(A44) HypW = Ho, (X2 +Y2+2%) = 20 H ., by + Hyoy0F = Hyp (X2 +Y?+2%) = 21
and by (A.1.2),

11 11 11 11
H oz W = _ZWDXYZ\NiZDI(YZ\NiZ + EWHXYZ\NiZ = _ZWZ\NiWiT 2+ EWZI

1 !
= - WW + =1,
W3 [ A

Ash =w - R andh’ =w’ - 2Rw, + R?*, we have

1 1

Hyh = Hy,W = _WWiWiT +Wi

and
2R 2R

HueV = Hyo W = 2RH oW, = 21 +WiWiWiT _Wil _

so that
1 R R

A.4.5 —H 2 = 1-— |l +_WWT .
(A48 Huh ( WJ 2w

A.5 Mixed Derivatives of the Orthogonal Error Function
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First, we differentiate with respect to the rangeiabled, , starting with the key quantity; :

aW2 0 2 2 2
A5.1 L = T (X?+Y?+Z72%-2dp +d*) =-2(p -d.
( ) ad ad( ip+d7) (p —d)
ow 110w 11 1
|l === "1 - 2 d = - . — d
q 2w od 2W|( )(p —dy) Wi(p. )
01 1 ow 1 1
— == == (-DXp -d)Y=—"(p —-d) .
adw  wad Wf( )(p —dy) wf(p' )
Thus
o’ _ 9 ) ow w - R R
—V = (wW-R°"=2(w -R—=-2—"(p -d =-21-—|(p —d
ad ~ad W - R) (W )adi W (p —d [ WiJ(IO. i)
and
1 oh? 1 R
EDXYZa_g = _(_ RDXYZW](pi -d) _£1_WJDXYZ P

so that, finally, by (A.4.1) and (3.2.1),
1 oh? R R

A.5.2 Oy, —="—=(p —d)W —|1-— |A4.

( ) 2 XYZ VV3 (p| |) i ( W jA|

We move to differentiation with respect to the leguvariablesg, 6 . Again we aim to apply
the differential matrix operator

F D},mc, [DXYZ] '

here to the individual orthogonal errdy’ -- expressed in matrix notation --:

R T R T R
_F (h )= 51'719( XYZh j éﬂ.c.W(l Wj (O |’7|Ciw)(1_Wj +WDE./7.<. (1 _J y

I I W

By (A.3.3),
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D}Wici VV' = _di D;I;iﬂifi/li = _dil ’
and by (A.3.4),

D;I;ir]iCi VV|2 - D;I;i”iCi ((X2 +Y2 + Zz) - 2Cll pi + diz) = _2diDT = _2diUT

§innigi Mi
T _ T [ 11 T _ di T
Dfﬂifi Vv' - D‘fi”ifi \N'z - E—Dfﬂifi \NIZ - _ U

W W
1 1 1 d, !
D;I;iﬂifi WI - _Wilj}imciwi - _W(_WUTJ —WUT

so that by (A.4.1),

w

lFi (W) = —di(l—BJl +R—diWUT.

2 W
Taking into account the orthogonality relation22(80), this matrix can again be symmetrized by
substitutingW™ =UT + 4" for U" in the above expression, yielding the matrix

sy = —al1- R+ RhpwwT
ST = d{1 WJI+W3WW .
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